
Applications of Silanes

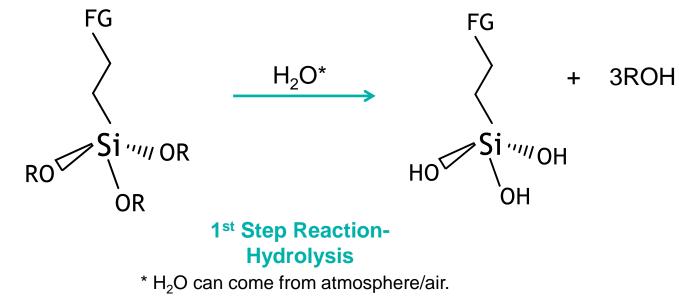
© 2023 BRB International B.V.

All rights reserved. No part of this document may be reproduced in any form possible, stored in a retrieval system, transmitted and/or disseminated in any form or by any means (digital, mechanical, hard copy, recording or otherwise) without the permission of the copyright owner.

Silane Structure

FG = Functional Group (Organo Type) e.g. -Vinyl, -Glycidoxy (Epoxy), -Amino, -Methacryloxy, -Akyl, etc.

OR = Alkoxy, Acetoxy, Oximee.g. -Methoxy (-OCH₃), -Ethoxy (-OCH₂CH₃), etc.


© 2023 BRB International B.V.

How Silanes Work

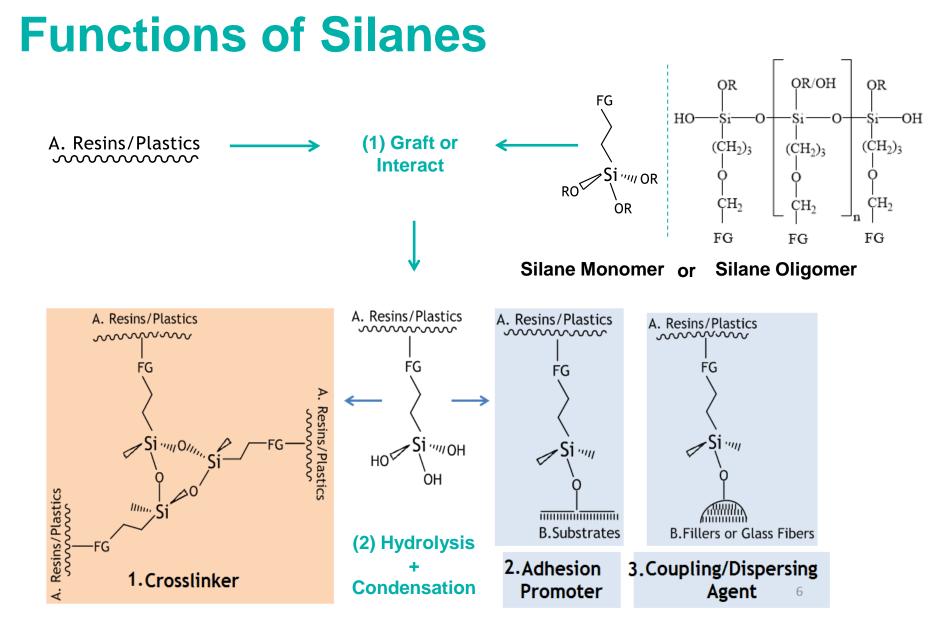
Silanes are 2 step Reaction Chemical which most of them are monomer. When store under inert gas (N_2), Silanes will be non-reactive monomer in form of FG-Si-OR which -R or Akyl is non-reactive group.

However, **Silanes can be hydrolyzed by moisture** which -Si-OR will be changed to -Si-OH called **"Silanol"** group and be ready to react or bond to the substrates or the fillers.

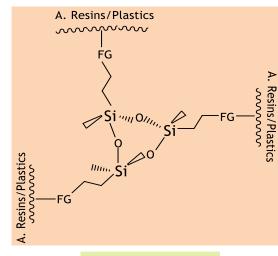
The change of -Si-OR to -Si-OH is called "Hydrolysis" which is the 1st step of silane reaction.

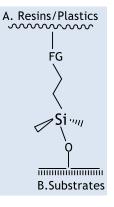


How Silanes Work

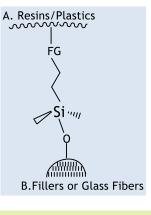

2nd step of the reaction is **"Condensation"**. After Hydrolysis, Silane contains "Silanol" group or Si-OH which is very reactive and ready to bond to substrates or fillers.

This bonding step is called **"Condensation"** which is function of adhesion promoter to the substrates or coupling/dispersing agent to the fillers.


* e.g. Application of Glass Fiber Surface Treatment



Benefits of Silanes in Each Function


Crosslinker

- Create net work structure
 in Polymer
- Increase strength and hardness
- Provide longer service life of product
- Provide higher temperature resistance
- Increase scrub/scratch resistance

Adhesion Promoter

- Enhance adhesion performance btw resins and substrates
- Improve corrosion resistance and prevent corrosion's spreading from crack line

Coupling/Dispersing Agent

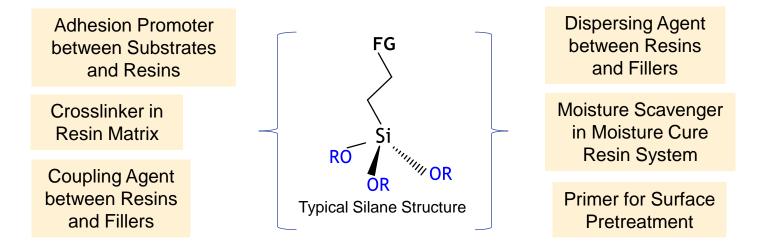
- Link between resins and fillers, stay together as one system
- Optimize strength of composites
- Able to add higher filler loading
- Improve filler's dispersion in resins

Storage Recommendation for Silanes


Since Silanes are moisture sensitive chemical, storage condition will be Affected to purity and performance Silanes.

- Inert gas likes N₂ gas is required to purge into the container for blanket before and after filling Silanes.
- In case of small bottle of sample and do not have N₂ gas, less air space in the container is recommended and the cap must be closed tightly. More air space left in the container may cause Silane's self-crosslinking.
- Sampling equipment should be cleaned with ethanol/methylated spirits and dried completely before use.
- Stainless steel, glass or Teflon® is recommended for any transferring equipment (like piping, valves, pump etc.) or any parts that comes in direct contact with Silanes.
- Glass or steel container (with internal coating such as epoxy inside steel container) is recommended in order to have less moisture permeability to Silanes.
- Some Silanes such as Silanil 250 is recommended to keep in amber or opaque container to avoid sun light.

Silanes in Each Industry

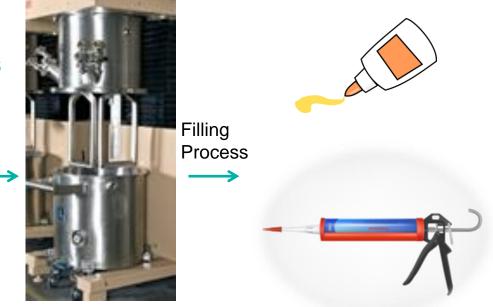


Silanes for Adhesives and Sealants

Functions of Silanes in Adhesives and Sealants

-FG

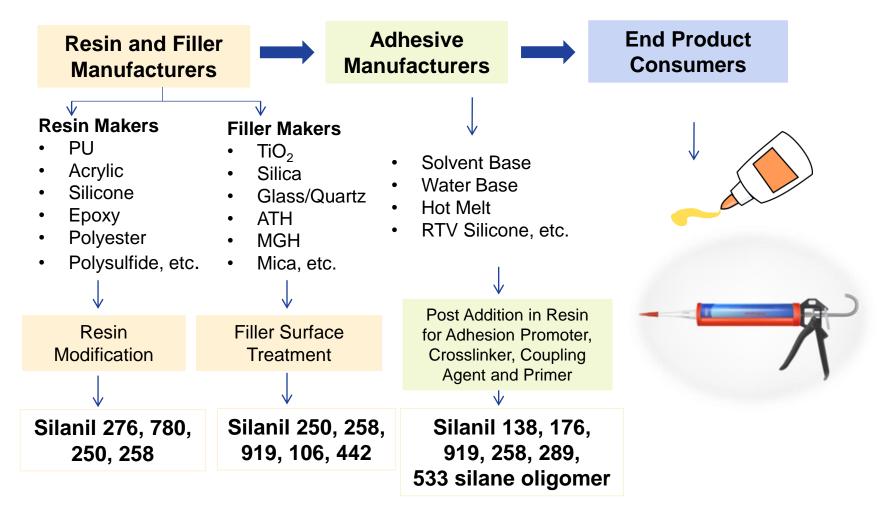
- Organofunctional group, e.g., -Amino, -Epoxy (Glycidoxy), -Vinyl, -Methacryloxy.
- Function of reaction or interaction with resins, influencing to adhesion performance and mechanical properties of adhesives.


- Alkoxy group, e.g., -Methoxy, -Ethoxy.
- Function of hydrolysis and condensation, influencing to tack free time, curing time, and shelf life.

Application in Adhesives and Sealants

Example of Silanes in Typical Ingredients

- Resins
- UV stabilizers
- Plasticizers
- Moisture scavengers > Silanil[®] 276
- Fillers (CaCO₃, etc.)
- Thixotropic agents (Fumed silica or additives)
- Pigments/Colorants
- Adhesion promoters*
 > Silanil[®] 176, 919, 258, 533 silane oligomer, etc.
- Catalysts
- Other additives
- May be solvents
- Also curing agents for "Silicone Sealants"
 - > Silanil[®] MOS, VOS, MTAS, ETAS



for High Viscosity Mixing

* Dosage of Silanes in the range of 0.2-2% on resin solid wt., please contact BRB for specific technical enquiries.

Customer Chain for Adhesives and Sealants

By Organofunctional Group Matching

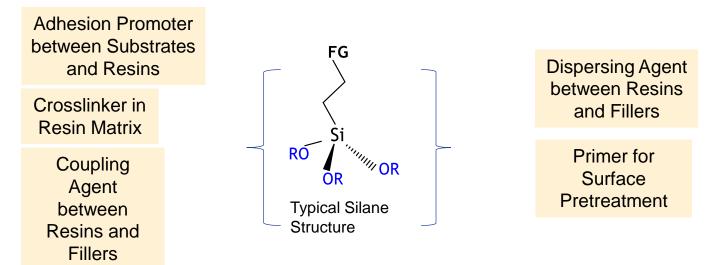
	Polyurethane	Polyurethane				Silyl
Acrylic	1K	2K	Ероху	Silicone	Polysulfide	Polymer
Silanil [®] 250	Silanil [®] 258	Silanil® 258	Silanil [®] 258	Silanil® 176	Silanil [®] 258	Silanil [®] 176
Silanil [®] 258	Silanil [®] 260	Silanil [®] 919	Silanil [®] 919	Silanil® 919	Silanil [®] 442	Silanil [®] 919
Silanil [®] 533	Silanil [®] 533	Silanil [®] 176	Silanil [®] 176	Silanil® 780	Silanil [®] 919	Silanil [®] 276
Silanil [®] 919		Silanil [®] 138	Silanil [®] 289		Silanil [®] 533	
Silanil [®] 276		Silanil [®] 533	Silanil [®] 533			
Silanil [®] 780						

By Functions

Adhesion Promoter	Crosslinker	Coupling Agent	Moisture Scavenger	Curing Agent for RTV
Silanil [®] 919	Silanil [®] 250	Silanil [®] 919	Silanil [®] 276	Silanil [®] MOS (Oxime)
Silanil [®] 176	Silanil [®] 276	Silanil [®] 176		Silanil [®] VOS (Oxime)
Silanil [®] 138	Silanil [®] 780	Silanil [®] 138		Silanil [®] MTAS (Acetoxy)
Silanil [®] 307	Silanil [®] 258	Silanil [®] 307		Silanil [®] ETAS (Acetoxy)
Silanil [®] 258	Silanil [®] 289	Silanil [®] 258		Silanil [®] 118 (Alkoxy)
Silanil [®] 289	Silanil [®] 533	Silanil [®] 289		Silanil [®] 203 (Alkoxy)
Silanil [®] 533		Silanil [®] 442		
Silanil [®] 442				

* The sequence of silane addition in formulation affects the function of silane.

Remark: Recommendation is based on testing and historical experience data.



Silanes for Paints and Coatings

Functions of Silanes in Paints and Coatings

- -FG
- Organofunctional group, e.g., -Amino, -Epoxy (Glycidoxy), -Vinyl, -Methacryloxy.
- Function of reaction or interaction with resins, influencing to polymer structure, adhesion performance, and mechanical properties, e.g., scrub resistance, hardness, film strength, etc.

Alkoxy group, e.g., -Methoxy, -Ethoxy.

Function of hydrolysis and condensation, which **generally provides** adhesion on substrate and controls reactivity by size of molecule (Ethoxy (bulkier) has a slower reaction rate than methoxy).

Application in Paints and Coatings

Primer

Polymerization

Cold Blend

Silane as Adhesion Promoter

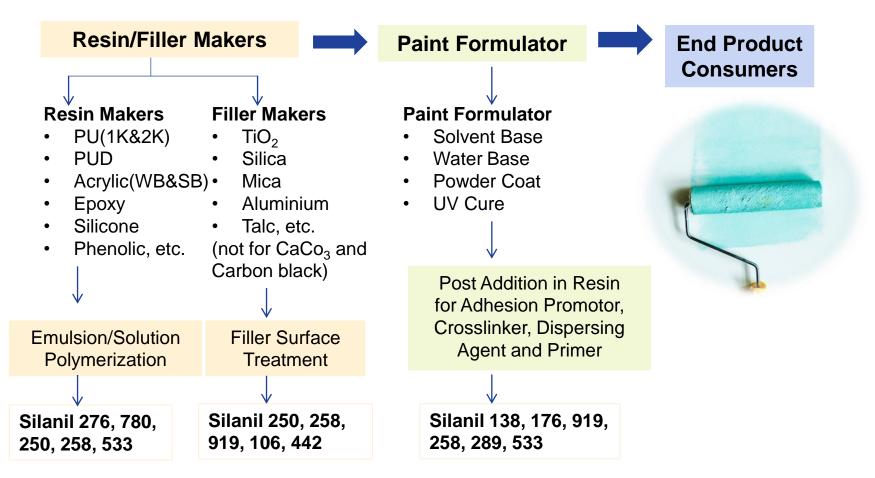

```
Polymerization
```


Silane as Crosslinker

Post Addition

Resin+ Silanes (e.g. Silanil[®] 919, 258, 533 at 0.2-2% wt. of resin solid)

Induction time at least overnight


Other Additives/Fillers added

+ Mill–base

Silane as Crosslinker, Coupling Agent, and/or Adhesion Promoter

Customer Chain for Paints and Coatings

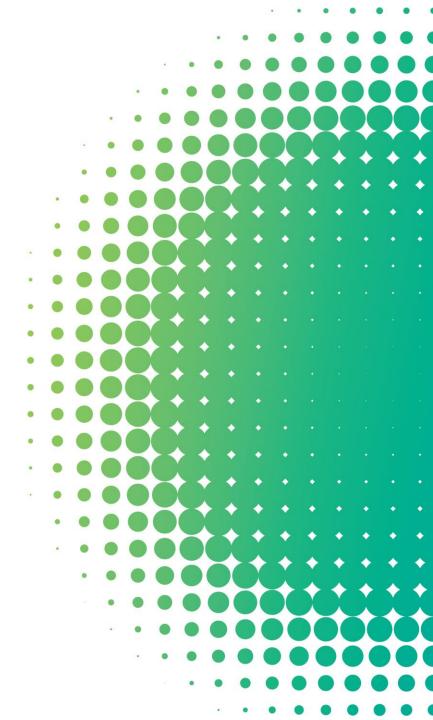
Recommendation in Paints and Coatings

By Functional Group Matching

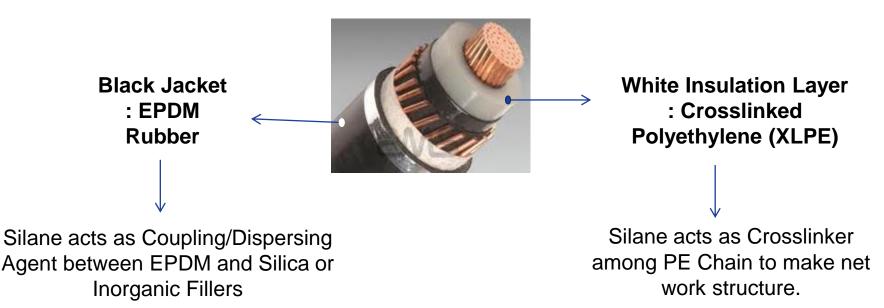
Acrylic	PU 1K	PU 2K	Ероху	Alkyd	Polyamide	Phenolic	PBT	Polyester	PUD	Silicone
Silanil 250	Silanil 258	Silanil 258	Silanil 258	Silanil 176	Silanil 176	Silanil 258	Silanil 258	Silanil 250	Silanil 258	Silanil 176
Silanil 258	Silanil 260	Silanil 533	Silanil 289	Silanil 919	Silanil 919	Silanil 533	Silanil 919	Silanil 780	Silanil 289	Silanil 919
Silanil 289	Silanil 533	Silanil 919	Silanil 533			Silanil 919	Silanil 176	Silanil 276	Silanil 260	Silanil 780
Silanil 533		Silanil 176	Silanil 919			Silanil 307			Silanil 533	
Silanil 919		Silanil 138	Silanil 250			Silanil 176			Silanil 919	
Silanil 276										
Silanil 780										

By Functions

Crosslinker		Adhesion Promoter	Coupling/Dispersing Agent	Primer
Process: Process: Post Polymerization Addition*		Process: Post Addition	Process: Post Addition	Process: Cold Blend
Silanil 250	Silanil 258	Silanil 919	Silanil 919	Silanil 919
Silanil 276	Silanil 289	Silanil 176	Silanil 176	Silanil 138
Silanil 780	Silanil 533	Silanil 533	Silanil 138	Silanil 176
		Silanil 258	Silanil 258	
		Silanil 289	Silanil 289	

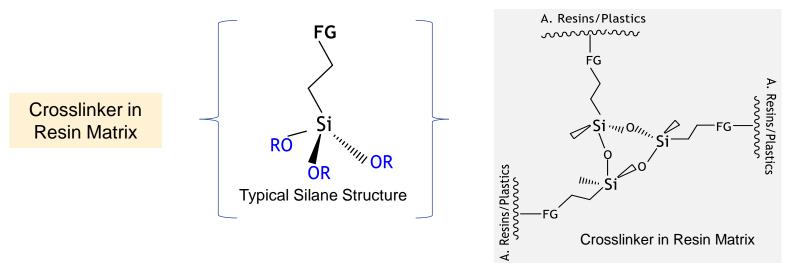

* The sequence of silane addition in formulation affects the function of silane.

Remark: Recommendation is based on testing and historical experience data.



Silanes for Wires and Cables

Two Applications in Wires and Cables


(Silanil 106)

(Silanil 276, Sivil cocktail)

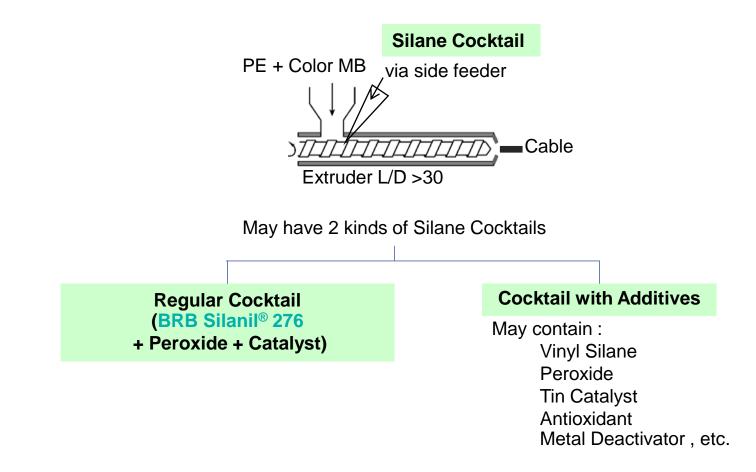
© 2023 BRB International B.V.

Functions of Silanes in XLPE Wires and Cables

- Organofunctional group e.g. -Vinyl (C=C)
 - Function of Grafting on Polyethylene Chain .
- -OR · Alkoxy Group, e.g. Methoxy
 - Function of Crosslinking by -Si-O- to bond between PE chains and transform thermoplastic to thermoset which is higher mechanical properties ,creep resistance, hardness, impact strength, solvent resistance, and heat resistance.

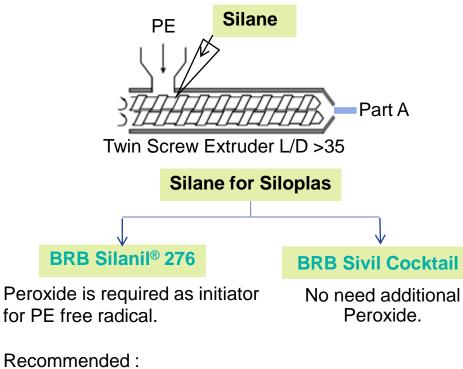
-FG

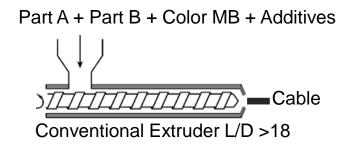
XLPE Commercial Processes


- Monosil
- Siloplas

Widely used

- Soaking
- Reactor Graft (Copolymerization)
- Dry Silane Masterbatch


XLPE by Monosil Process (One Step Process)

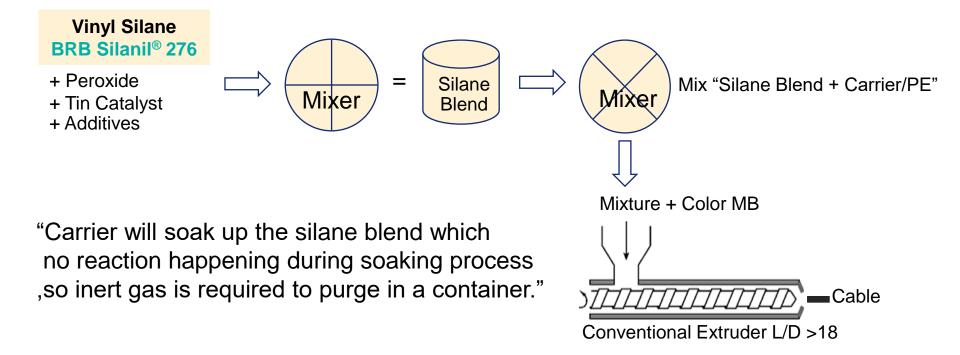

XLPE by Siloplas Process (Two Step Process)

1st Step- PE Grafting

Stabilized LLDPE/LDPE 100 wt. Silanil276 1.5-2.2 wt. DC Peroxide 0.18-0.25 wt.

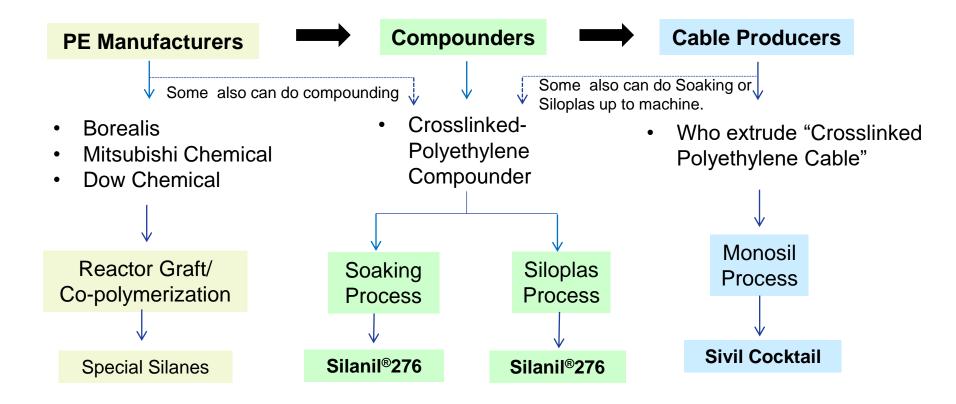
2nd Step- Crosslinking

Part B = Catalyst MB (Masterbatch)

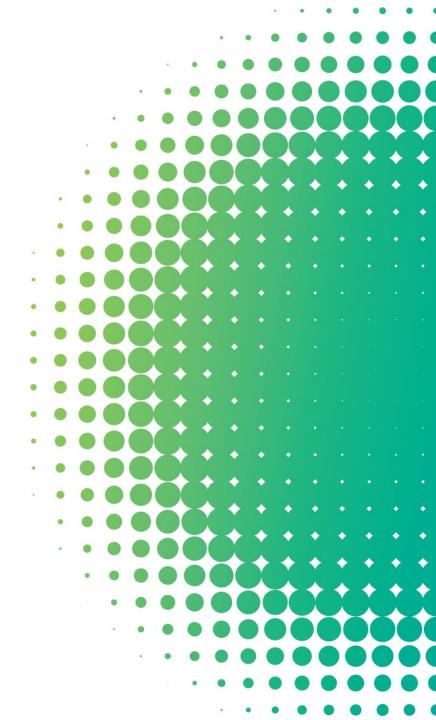

May contain		
LLDPE/LDPE	98 part w	t.
DBTDL (Tin)	1,,	
Processing Aid	1,,	

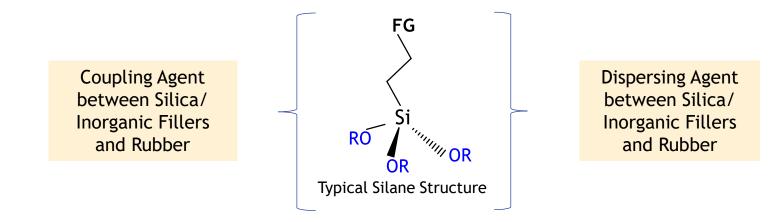
Dosage of Part A:B

Can be used 5-5.5 % total wt. e.g. A:B = 95:5



XLPE by Soaking Process


Customer Chain for XLPE Wires and Cables



Silanes for Rubber Compound

Functions of Silanes in Rubber Compound

- Organofunctional group, e.g. -Vinyl, -Mercapto
- Function of reaction or grafting on rubber, influencing to mechanical properties, abrasion resistance, and durability of compounds.
- -OR

-FG

- Alkoxy group, e.g. Methoxy , -Ethoxy
- Function of Hydrolysis and Condensation, where acts as a bridge to bond between inorganic fillers (silica) and resins/plastics/rubber.

Application in Rubber Compound

+ Silica

- + Silanes
- e.g. Silanil 442, 106
- + Other Additives /Fillers

Compounding \rightarrow

Peroxide Cure Rubber

• **EPDM** (Ethylene Propylene Diene Monomer Rubber) Silanil 106, 780 is recommended.

Sulfur Cure Rubber

SBR (Styrene Butadiene Rubber)
NBR

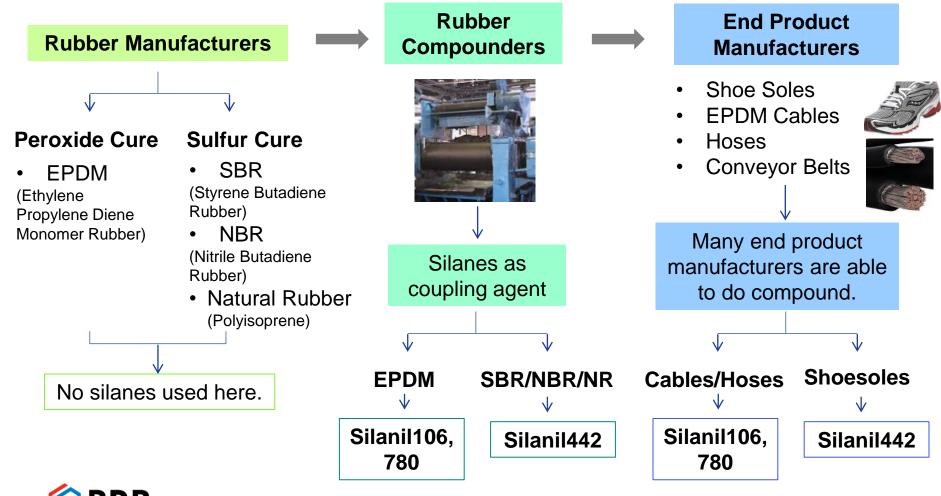
(Nitrile Butadiene Rubber)

 Natural Rubber (Polyisoprene) Silanil 442 is recommended

End Product Process

- Compression Molding
- Injection Molding
- Extrusion

Shoe Soles Hoses Cables



Conveyor Belts Etc.

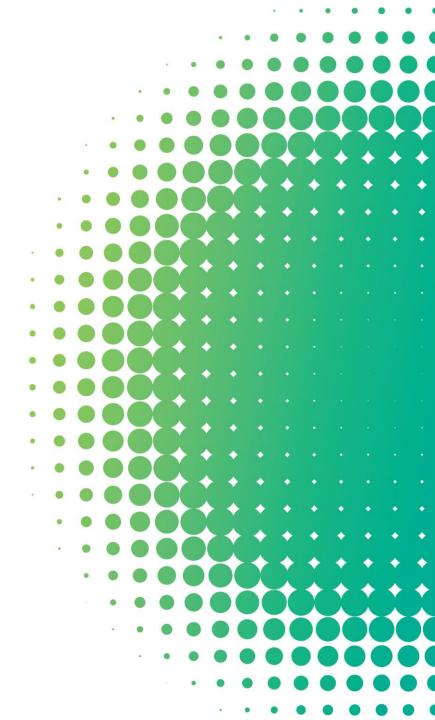
Customer Chain for Rubber Compound

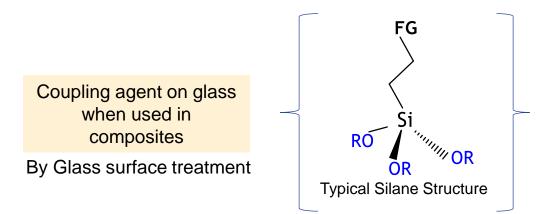
© 2023 BRB International B.V.

Recommendation in Rubber Compound

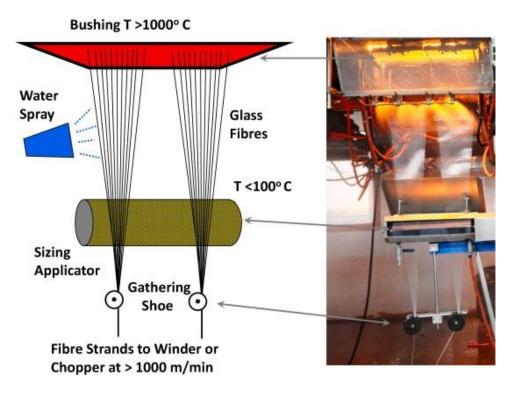
By Functional Group Matching

Coupling Agent							
EPDM	SBR	NBR	Isoprene Rubber				
Silanil 106	Silanil 442	Silanil 442	Silanil 442				
Silanil 780							


Remark: Recommendation is based on testing and historical experience data.


© 2023 BRB International B.V.

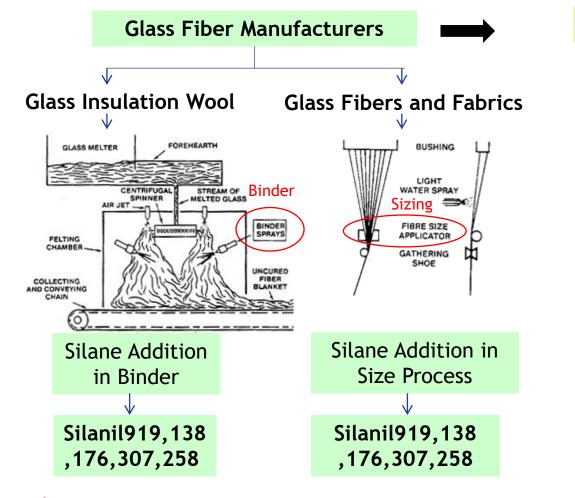
Silanes for Glass Fibers and Fabrics


Functions of Silanes in Glass Fibers and Fabrics

- -FG Organofunctional group, e.g., -Amino, -Epoxy (Glycidoxy), -Methacryloxy
 - Function of glass surface modification, to create "Functional Group" on glass surface for interaction with "Plastics" or "Resins".
- -OR · Alkoxy group, e.g., -Methoxy, -Ethoxy
 - Function of hydrolysis and condensation, where **silanol is bonded on glass surface.**

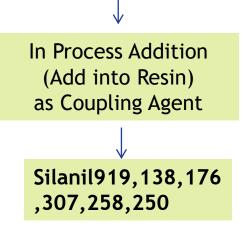
Application in Glass Fibers and Fabrics

Picture Ref. :Thomason, J. L. (2019). Glass fibre sizing: A review. Composites Part A: Applied Science and Manufacturing, 127, 105619.


Size bath: silane is added at 0.3-1% based on total weight.

Size Process

- The individual filaments receive a coating of size at the forming stage.
- After they leave the bushing. This size, made up of organic products dispersed in water, is designed to give the glass strand certain characteristics necessary for the end application.
- For some applications, special sizes may contain film formers and silane as "coupling agent," which enhances the mechanical and ageing properties of the end product.


Customer Chain for Glass Fibers and Fabrics

Manufacturers of :
Fiber Reinforced Plastics (FRP)

Glass Fiber's Customers

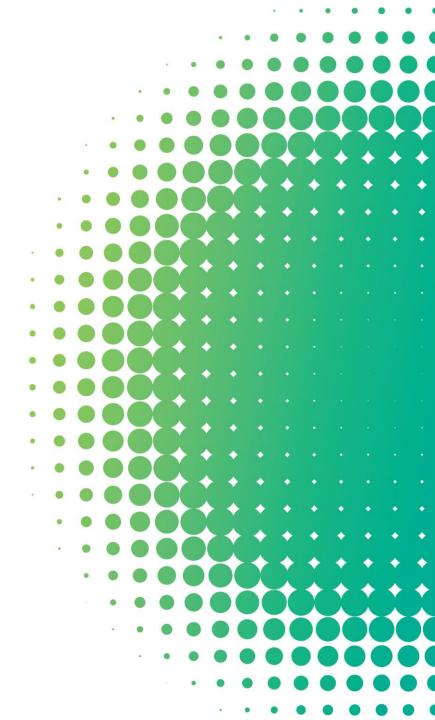
- Epoxy Molding Compound
- Phenolic Molding Compound
- Other Composites

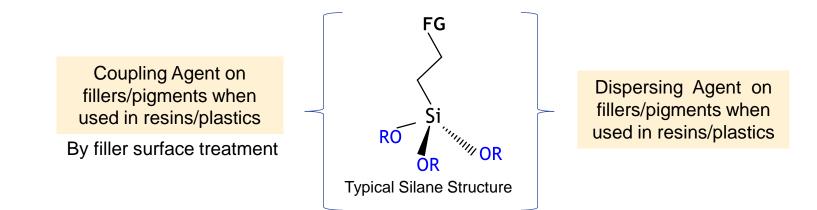
Recommendation in Glass Fibers and Fabrics

By Functional Group Matching

Glass Surface Modification to Match with Resin Unsat.

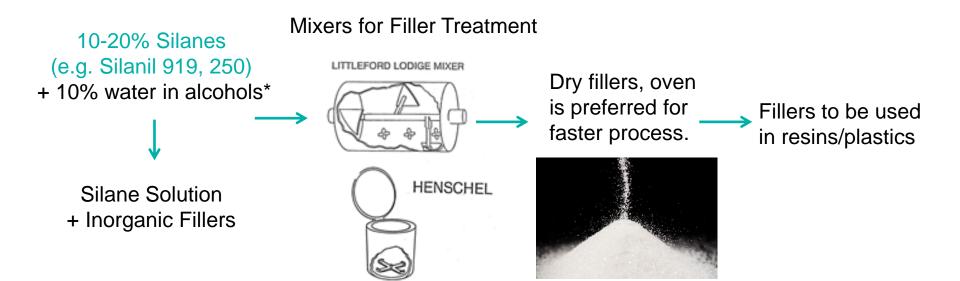
Acrylic	EPDM	SBR/NBR	Ероху	Phenolic	Polyester
Silanil [®] 250	Silanil [®] 106	Silanil [®] 442	Silanil [®] 919	Silanil [®] 919	Silanil [®] 250
Silanil [®] 258	Silanil [®] 780		Silanil [®] 258	Silanil® 258	Silanil [®] 919
Silanil [®] 919			Silanil [®] 260	Silanil [®] 138	


Remark: Recommendation is based on testing and historical experience data.


© 2023 BRB International B.V.

Silanes for Fillers and Pigments

Functions of Silanes in Fillers and Pigments


- Organofunctional group, e.g., -Amino, -Epoxy (Glycidoxy), -Methacryloxy
- Function of filler surface modification to create "Functional Group" on glass surface for interaction with "Plastics" or "Resins".
- Alkoxy group e.g. -Methoxy, -Ethoxy
- Function of Hydrolysis and Condensation, where **silanol is bonded on glass surface.**

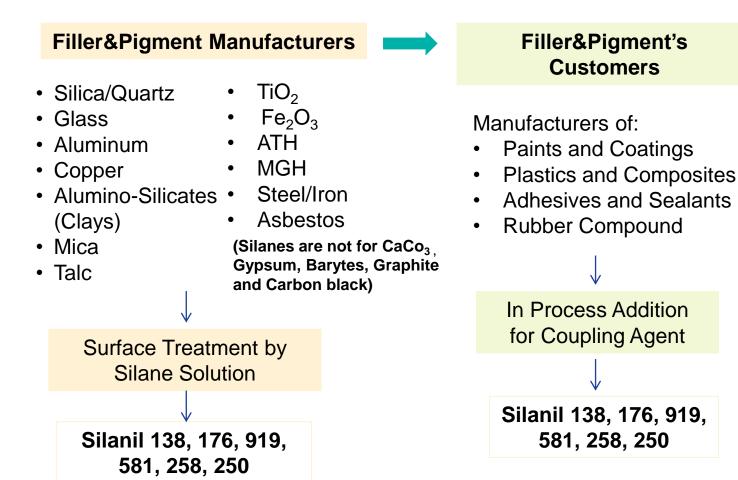
-FG

-OR

Filler Treatment by Silanes

- * Small amount of acetic acid may be added to increase reactivity.
 4.5 pH is recommended.
- ** Amino silane does not required for pH adjustment.

Application in Fillers and Pigments


Fillers Recommended for Silanes Not Recommended for Silanes

CaCO₃ Gypsum (CaSO₄) Barytes (BaSO₄) Graphite Carbon Black

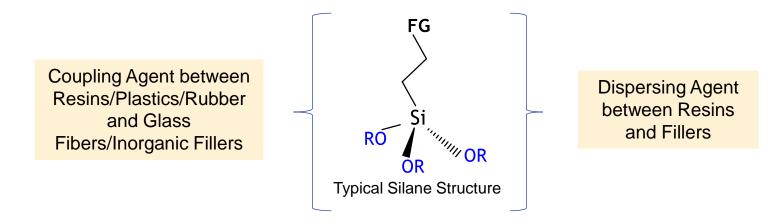
Customer Chain for Fillers and Pigments

Recommendation in Fillers and Pigments

By Functional Group Matching


Filler Surface Modification to Match with Resin					
Acrylic	EPDM	PVC Plastisols	Ероху	Phenolic	Unsat. Polyester
	Silanil 106			Silanil 258	Silanil 250
Silanil 258	Silanil 780	Silanil 919	Silanil 919	Silanil 919	
		Silanil 176			

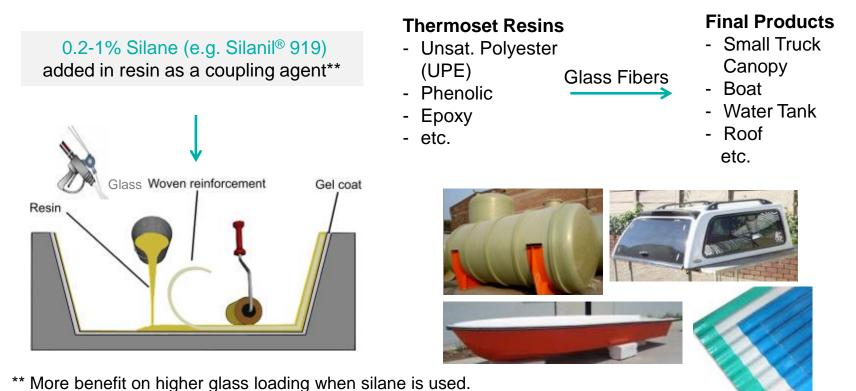
Remark: Recommendation is based on testing and historical experience data.



Silanes for Fiber Reinforced Plastics (FRP) and Composites

Functions of Silanes in Fiber Reinforced Plastics (FRP) and Composites

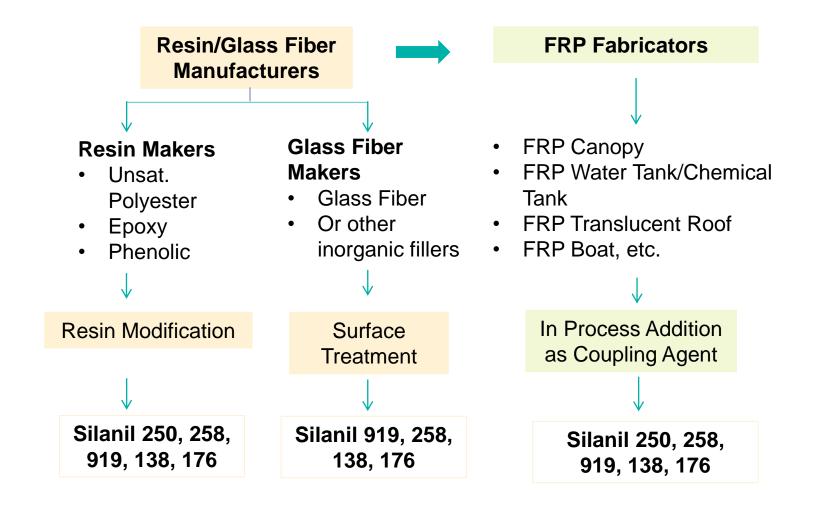
- Organofunctional group, e.g., -Amino, -Epoxy (Glycidoxy), -Methacryloxy
 - Function of reaction or interaction with resins/plastics/rubber, influencing to mechanical properties of resin composites such as hardness, tensile strength, impact strength, etc.
- Alkoxy group, e.g., -Methoxy , -Ethoxy.
 - Function of Hydrolysis and Condensation, where acts as a bridge to bond between inorganic fillers and resins/plastics/rubber.



-FG

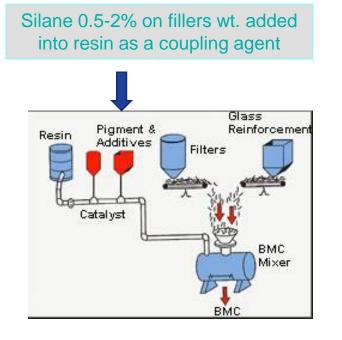
-OR

Applications in Fiber Reinforced Plastics (FRP)


Process: Spray-up, Hand lay-up, Sheet Molding Compound (SMC), etc.

Picture Ref.: Jawaid, M., Thariq, M., & Saba, N. (Eds.). (2018). Woodhead Publishing.

Customer Chain in Fiber Reinforced Plastics (FRP)



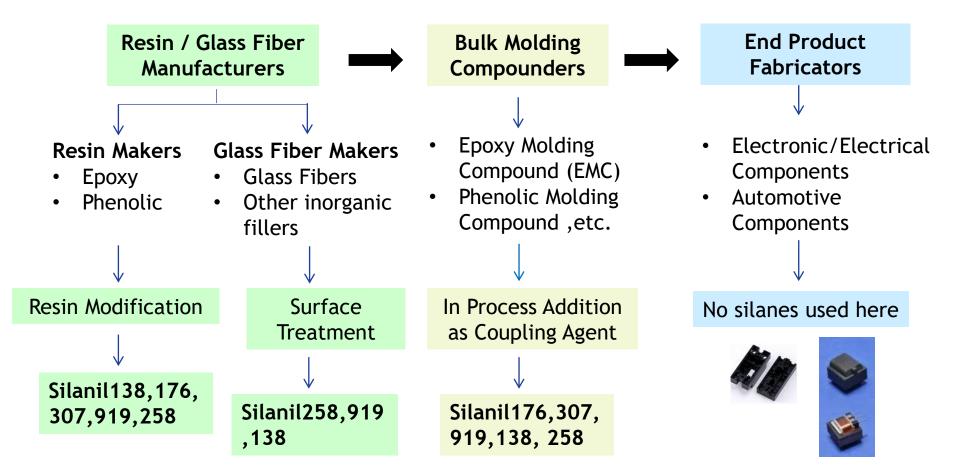
Application of Silanes in Bulk Molding Compound (BMC)

Bulk molding compounds (BMC) or bulk molding composites are glass fibers, organic fillers, or/and inorganic fillers reinforced thermoset plastics primarily used in injection and compression molding .

Generally, BMC is manufactured by mixing chopped glass fibers in a mixer with thermoset resin .

Thermoset Resins

- Unsat. Polyester (UPE)
- Phenolic
- Epoxy ,etc.



Final Products

- Electronic Components e.g. Connector, Breaker Circuit, etc.
- Electric Components
- Automotive Mechanical Components

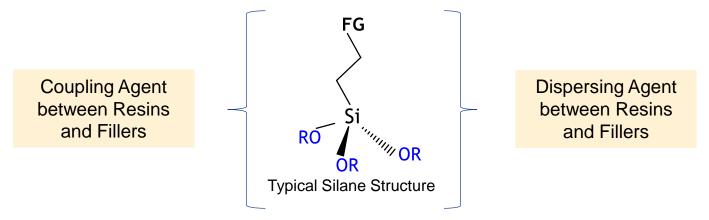
Customer Chain for BMC

Recommendation in FRP and composites

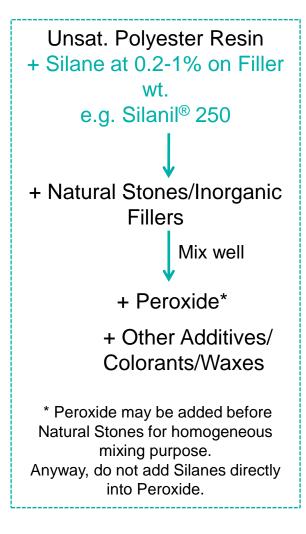
By Functional Group Matching

Coupling Agent					
Unsat. Polyester	Ероху	Phenolic			
Silanil 250	Silanil 258	Silanil 919			
Silanil 919	Silanil 289	Silanil 138			
Silanil 138	Silanil 260	Silanil 176			

Remark: Recommendation is based on testing and historical experience data.

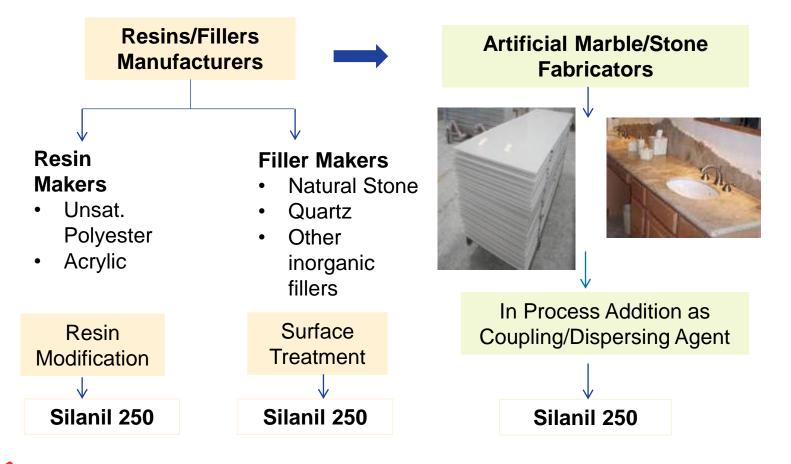


Silanes for Artificial Marble and Stone


Functions of Silanes in Artificial Marble/Stone

- -FG
- Organofunctional group, e.g. -Amino, -Epoxy (Glycidoxy), -Methacryloxy.
- Function of reaction or interaction with resin, influencing to mechanical properties of resin composites such as hardness, tensile strength, impact strength, etc.
- -OR
- Alkoxy group, e.g., -Methoxy, -Ethoxy.
- Function of Hydrolysis and Condensation, where acts as a bridge to bond "Natural Stones or Inorganic Fillers" and "Resins"

Application in Artificial Marble and Stone



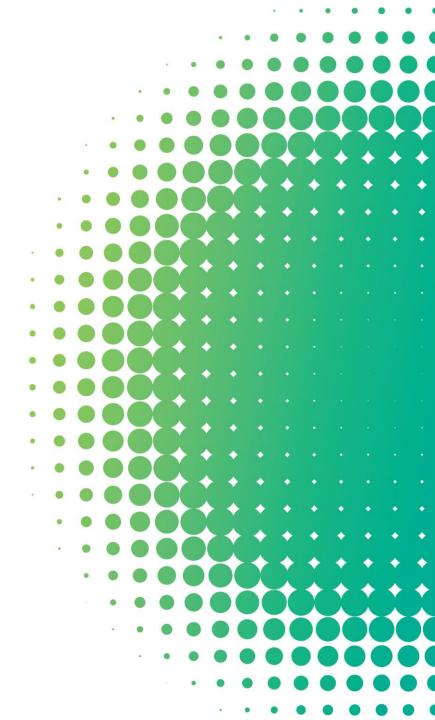
Marble Casting Process

More benefit on higher filler loading ability when silane is used.

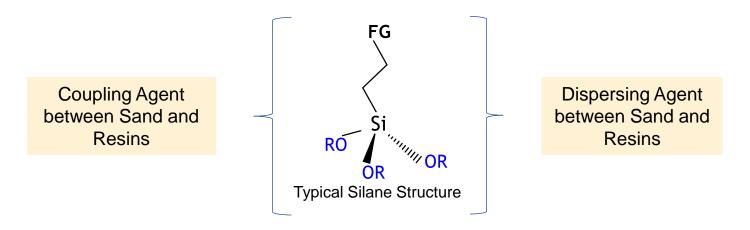
Customer Chain in Artificial Marble/Stone

Recommendation in Artificial Marble/Stone

By Functional Group Matching


Coupling Agent				
Unsat. Polyester	Acrylic			
Silanil 250	Silanil 250			

Remark: Recommendation is based on testing and historical experience data.



Silanes for Foundry Molds

Functions of Silanes in Foundry Molds

- -FG
 Organofunctional group e.g. -Amino, -Epoxy (Glycidoxy).
 Function of reaction or interaction with resin, which provides better mechanical strength and allows higher filler loading (lower resin loading).
- -OR
 Alkoxy group e.g. -Methoxy, -Ethoxy.
 Function of Hydrolysis and Condensation, where bonds to "Sand Surface" and provides moisture resistance to mold.

Application in Foundry Molds

Resins + Silanes _ (e.g. Silanil[®] 919, 307, 176 and Si40 (TEOS)) + Sand, Ceramic Materials Mixture/ Compound

Type of Foundry Molds

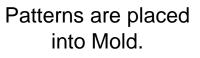
No Bake Molding

- Phenolic (Novolac)
- Urea formaldehyde
- Furan

Cold Box Molding

Urethane
 Phenolic

Hot Box Molding


- Phenolic
- Furan

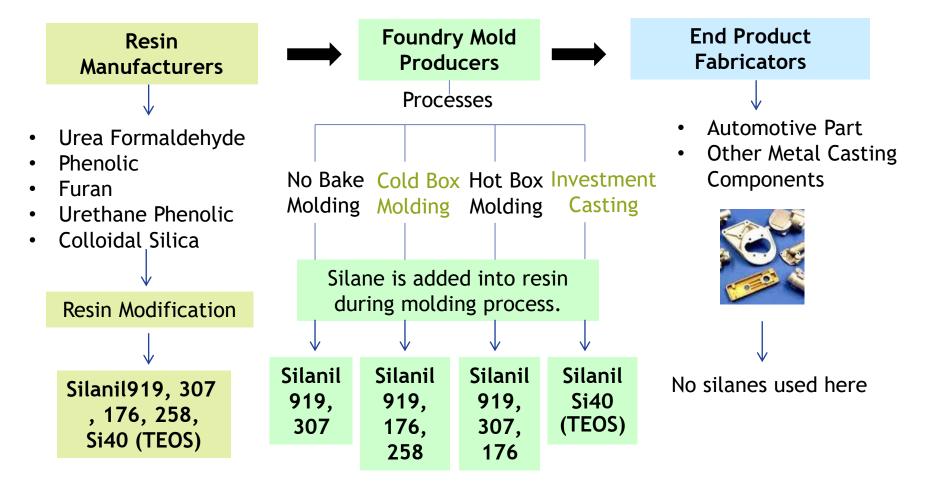
Shell Molding by Investment Casting

Colloidal Silica
 (Silica Sol)

Compound

Ceramic mold by investment casting TEOS is used for binder (colloidal silica) in investment casting.

Molten metal is poured into the closed mold.



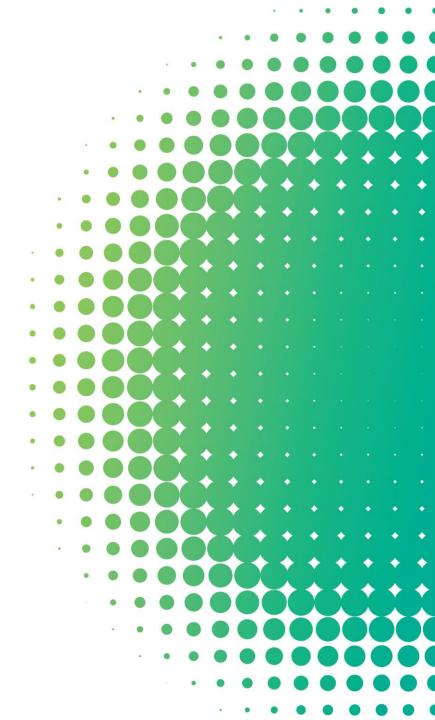
Workpiece from investment shell

© 2023 BRB International B.V.

Customer Chain for Foundry Molds

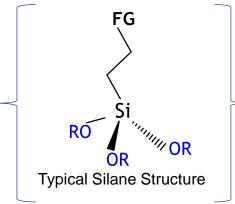
Recommendation in Foundry Molds

By Functional Group Matching


Coupling Agent					
Phenolic	Furan	Urea Formaldehyde	Urethane Phenolic		
Silanil 258	Silanil 919	Silanil 919	Silanil 919		
Silanil 919	Silanil 307		Silanil 176		
Silanil 307	Silanil 176				
Silanil 176					

Remark: Recommendation is based on testing and historical experience data.

Silanes for Sol Gel Coatings



Functions of Silanes in Sol Gel Coatings

Primer/Surface Pretreatment on Inorganic Substrates

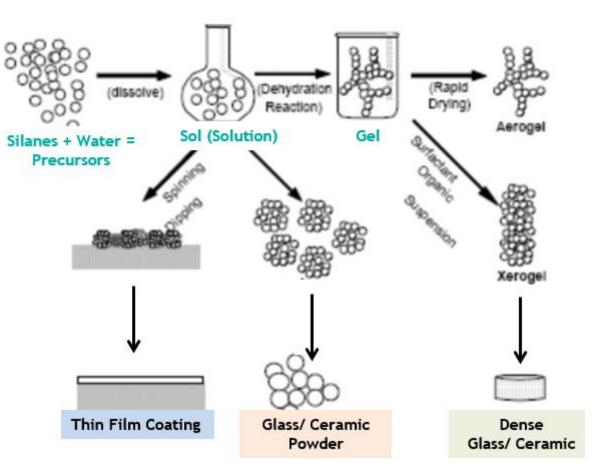
- Act as Adhesion Promoter Layer to Organic Coatings
- Form Hydrophobic or Hydrophilic Layer up to FG of Silanes.

Also Coupling Agent between Organic Coatings and Inorganic Fillers

- -FG
- Organofunctional group e.g. -Vinyl, -Methacryloxy, -Epoxy and -Amino
- Function of hydrophobic or hydrophilic characteristic forming on inorganic substrates such as metal or glass and interaction with inorganic coatings.
- -OR
- Alkoxy group e.g. -Methoxy, -Ethoxy, etc.

Function of Hydrolysis and Condensation, which **bond to inorganic substrates or fillers for adhesion or coupling purpose.**

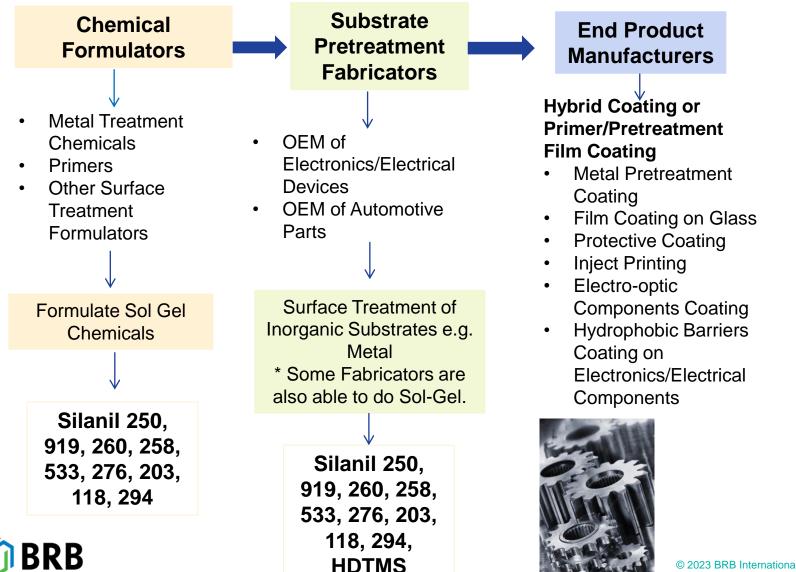
Application in Sol Gel Coatings


The sol gel process is the method for producing solid materials by monomer conversion to the **colloidal solution (Sol)** that acts as the precursor for an integrated network or gel.

Applications for Sol Gel-derived products are numerous, especially for thin film formation and capable to modify structure by utilizing an organically modified precursors

e.g. Organofunctional Silanes + Water = Precursors

Which Precursors are added into Sol, then transform to Gel per Sol-gel process.


Silane used in Sol (Solution) is called "Silane Sol Gel System"

Picture Ref. : Kavitha, B., Nirmala, M., & Pavithra, A. (2016). Annealing effect on nickel oxide nanoparticles synthesized by sol-gel method. *World scientific news*, (52), 118-129.

Customer Chain for Sol Gel Coatings

A Subsidiary of PETRONAS Chemicals Gr

Recommendation in Sol Gel Coatings

Organic-Inorganic Hyb	orid Coating or Primer	Organic Surface Pretreatment
Adhesion Promoter	Coupling Agent	Hydrophobic Modification
Silanil 250	Silanil 250	Silanil 203
Silanil 919	Silanil 919	Silanil 118
Silanil 260	Silanil 260	Silanil 294
Silanil 258	Silanil 258	Silanil HDTMS
Silanil 533	Silanil 533	
Silanil 276	Silanil 276	

* The sequence of silane addition in formulation affects the function of silane.

Remark: Recommendation is based on testing and historical experience data.

